4.7 Article

An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as a multimodal sensor

Journal

POLYMER CHEMISTRY
Volume 11, Issue 7, Pages 1327-1336

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9py01737b

Keywords

-

Funding

  1. National Key R&D Program of China [2018YFC1801502]

Ask authors/readers for more resources

Stretchable, self-healable, conductive hydrogels have received increasing attention due to their broad range of applications, such as wearable devices and ionic skin. However, severe challenges remain in integrating fatigue resistance, favorable self-healing, and stretchable and compressible efficiency into a hydrogel. Herein, a highly stretchable, compressible, self-healable somatosensory platform was fabricated by blending Fe3+ ions with polyvinyl alcohol acetoacetate (PVAA)/polyacrylamide (PAM) hydrogel to form a double network hydrogel, which combined chemical coordination and physical crosslinking in one system. In this system, the PAM network offered high stretchability and compressibility to the hydrogel. Meanwhile, the coordination of the Fe3+/PVAA network provided ionic conductivity and self-healing ability. The resulting hydrogel exhibits prominent stretchability (>700%), high sensitivity, high healing efficiency (80% within 24 h) and excellent fatigue resistance. Therefore, the hydrogel could be used as a potential artificial ionic skin including strain and pressure sensors to directly monitor human motion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available