4.6 Article

Fabrication and Characterization of UV Photodetectors with Cu-Doped ZnO Nanorod Arrays

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 167, Issue 2, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ab69f2

Keywords

-

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 107-2221E-150-032, MOST 108-2221-E-024-006, MOST 108-2221-E150-013-MY2]

Ask authors/readers for more resources

In this study, metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors (PDs) based on Cu-doped ZnO (CZO) nanorods (NRs) were fabricated and investigated. The CZO NRs were prepared on a Corning glass substrate by the chemical bath deposition (CBD) method with photolithography processes. It was found that the diameter and length of ZnO NRs increased with Cu-doped concentration. The X-ray diffraction (XRD) analysis showed that the growth of NR arrays along the c-axis was hexagonal wurtzite crystal. Compared with pure ZnO NRs, it can be seen that the main UV peak (378 nm) of photoluminescence (PL) spectra showed a blue-shift phenomenon with the increase of Cu-doped concentration. Additionally, it was found that the rise and recovery time of such a fabricated PD were shortened under the UV illumination. The UV sensing properties of the CZO PDs were improved since the trapping and de-trapping of electrons by Cu-related complexes were faster than the adsorption and desorption of oxygen molecules. With a 3 V applied bias and 380 nm UV illumination, the optimal sensitivity of our PDs is 196.6. (c) 2020 The Electrochemical Society (ECS). Published on behalf of ECS by IOP Publishing Limited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available