4.7 Article

Immersed boundary-simplified thermal lattice Boltzmann method for incompressible thermal flows

Journal

PHYSICS OF FLUIDS
Volume 32, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5138711

Keywords

-

Ask authors/readers for more resources

An immersed boundary-simplified lattice Boltzmann method (IB-STLBM) is proposed in this paper for the simulation of incompressible thermal flows with immersed objects. The fractional step technique is adopted to resolve the problem in two successive steps. In the predictor step, the simplified thermal lattice Boltzmann method (STLBM) is utilized to resolve the intermediate flow variables without considering the immersed objects. The STLBM is advantageous over the conventional thermal lattice Boltzmann method (TLBM) in memory cost, boundary treatment, and numerical stability. In the corrector step, the boundary condition-enforced immersed boundary method (IBM) is used to give correction values of velocity and temperature for accurate interpretation of the Dirichlet boundary conditions on the surface of the immersed objects. Based on the present IBM, some novel strategies can be applied in the evaluation of hydrodynamic forces or thermal parameters of the immersed objects. Five numerical examples are presented for comprehensive validation of the accuracy and robustness of IB-STLBM in various two- and three-dimensional thermal flow problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available