4.7 Article

Spindle assembly checkpoint satisfaction occurs via end-on but not lateral attachments under tension

Journal

JOURNAL OF CELL BIOLOGY
Volume 216, Issue 6, Pages 1533-1542

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201611104

Keywords

-

Categories

Funding

  1. National Institutes of Health [DP2GM119177]
  2. Rita Allen Foundation
  3. Searle Scholars' Program
  4. National Science Foundation
  5. University of California, San Francisco
  6. Moritz Heyman Discovery Fellowship

Ask authors/readers for more resources

To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) prevents anaphase until all kinetochores attach to the spindle. What signals the SAC monitors remains unclear. We do not know the contributions of different microtubule attachment features or tension from biorientation to SAC satisfaction nor how these possible cues change during attachment. In this study, we quantify concurrent Mad1 intensity and report on SAC silencing, real-time attachment geometry, occupancy, and tension at individual mammalian kinetochores. We show that Mad1 loss from the kinetochore is switch-like with robust kinetics and that tension across sister kinetochores is established just before Mad1 loss events at the first sister. We demonstrate that CenpE-mediated lateral attachment of the second sister can persistently generate this metaphase-like tension before biorientation, likely stabilizing sister end-on attachment, yet cannot induce Mad1 loss from that kinetochore. Instead, Mad1 loss begins after several end-on microtubules attach. Thus, end-on attachment provides geometry-specific molecular cues or force on specific kinetochore linkages that other attachment geometries cannot provide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available