4.7 Article

Templated synthesis of nickel nanoparticles embedded in a carbon layer within silica capsules

Journal

DALTON TRANSACTIONS
Volume 49, Issue 8, Pages 2570-2577

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9dt04789a

Keywords

-

Funding

  1. Natural Science Foundation of Shanghai [18ZR1416400]
  2. National Nature Science Foundation of China [21305086]

Ask authors/readers for more resources

The encapsulation of small non-noble metal nanoparticles (NPs) within an inorganic layer has received considerable attention owing to their enhanced stability and high catalytic activity. Using a combination of emulsion-free polymerization, inner RF-Ni2+ and outer SiO2 coating, and subsequent carbonization treatment, herein, we have fabricated worm-like structured Ni-based composites in which a high density of nickel NPs are embedded in a carbon layer and also entrapped by SiO2 nanocages. We find that the carbonization temperature plays a vital role in adjusting the size of the Ni NPs. A detailed examination of the encapsulated nickel particles synthesized at 700 degrees C exhibited the best performance on the catalysis of the reduction of 4-NPs. Moreover, owing to the good alloying ability of the Ni NPs with noble metal NPs, the Ni-Pd alloy NPs are also entrapped in the SiO2 nanocages, which exhibit better performance on the catalysis than the Ni-based composites. The encapsulation of Ni-Pd alloys within SiO2 nanocages also improves stability against agglomeration and metal separation during catalytic operation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available