4.2 Review

Regulation of Central Nervous System Development by Class I Histone Deacetylases

Journal

DEVELOPMENTAL NEUROSCIENCE
Volume 41, Issue 3-4, Pages 149-165

Publisher

KARGER
DOI: 10.1159/000505535

Keywords

Cerebellum; Conditional knockout; Histone deacetylase; Neocortex; Neural progenitor cells; Neurodevelopment; Neurodevelopmental disorders

Funding

  1. National Institutes of Health (NIH) [R01 NS040408, R01 NS104508, R01 NS102192]

Ask authors/readers for more resources

Neurodevelopment is a highly complex process composed of several carefully regulated events starting from the proliferation of neuroepithelial cells and culminating with and refining of neural networks and synaptic transmission. Improper regulation of any of these neurodevelopmental events often results in severe brain dysfunction. Accumulating evidence indicates that epigenetic modifications of chromatin play a key role in neurodevelopmental regulation. Among these modifications are histone acetylation and deacetylation, which control access of transcription factors to DNA, thereby regulating gene transcription. Histone deacetylation, which restricts access of transcription factor repressing gene transcription, involves the action of members of a family of 18 enzymes, the histone deacetylases (HDAC), which are subdivided in 4 subgroups. This review focuses on the Group 1 HDACs - HDAC 1, 2, 3, and 8. Although much of the evidence for HDAC involvement in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are generally nonselective with regard to their effects on individual members of the HDAC family, this review is limited to evidence garnered from the use of molecular genetic approaches. Our review describes that Class I HDACs play essential roles in all phases of neurodevelopment. Modulation of the activity of individual HDACs could be an important therapeutic approach for neurodevelopmental and psychiatric disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available