4.6 Article

Novel β-1,3-d-glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 8, Issue 11, Pages 2307-2320

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tb02674f

Keywords

-

Funding

  1. National Natural Science Foundation of China [81402879, 81773643]
  2. Natural Science Foundation of Jiangsu Province of China [BK20140221]

Ask authors/readers for more resources

In this study, a new type of beta-1,3-d-glucan porous microcapsule (GPM)-enveloped and folate conjugated chitosan-functional liposome (FCL), FCL@GPM, was developed for the potential oral co-delivery of chemotherapeutic drugs and quantum dots (QDs) with facilitated drug absorption and antitumor efficacy. In this dual-particulate system, multiple FCLs serve as the cores for effective loading, folate-mediated tumor-targeting, facilitated intracellular accumulation, and pH-responsive controlled release of chemotherapeutic agents, while a GPM acts as the shell for affording macrophage-mediated tumor selectivity. Gefitinib (GEF) was selected as a chemotherapeutic agent, while acid degradable ZnO QDs were selected due to their dual role as an anticancer agent for synergistic chemotherapy and as a fluorescent probe for potential cancer cellular imaging. The GEF and ZnO QD co-loaded FCL@GPMs (GEF/ZnO-FCL@GPMs) exhibited a prolonged release manner with limited release before uptake by intestinal cells. Furthermore, Peyer's patch uptake, macrophage uptake, cytotoxicity, and biodistribution of FCL@GPMs were tested. In addition, GEF and ZnO QD co-loaded FCLs (GEF/ZnO-FCLs) not only have a tumor acidity responsive release property, but also induce a superior cytotoxicity on cancer cells as compared to GEF. Moreover, a 1.75-fold increase in the bioavailability of GEF delivered from GEF/ZnO-FCL@GPMs as compared to its trademarked drug (Iressa (R)). As a result, GEF/ZnO-FCL@GPMs exerted a superior antitumor efficacy (1.47-fold) as compared to the trademarked drug in mice. Considered together, the developed FCL@GPMs, combining the unique physicochemical and biological benefits of FCLs and GPMs, possess great potential as an efficient delivery system for the co-delivery of chemotherapeutic agents and quantum dots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available