4.6 Article

Evidence of Staphylococcus Aureus Deformation, Proliferation, and Migration in Canaliculi of Live Cortical Bone in Murine Models of Osteomyelitis

Journal

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 32, Issue 5, Pages 985-990

Publisher

WILEY
DOI: 10.1002/jbmr.3055

Keywords

STAPHYLOCOCCUS AUREUS; OSTEOMYELITIS; CANALICULAR SYSTEM; CORTICAL BONE; ELECTRON MICROSCOPY; HAPTOTAXIS; DUROTAXIS

Funding

  1. AOTrauma (Davos, Switzerland)
  2. National Institutes of Health [P30 AR069655, P50AR054041, S10RR026542, T32AR53459]

Ask authors/readers for more resources

Although Staphylococcus aureus osteomyelitis is considered to be incurable, the major bacterial reservoir in live cortical bone has remained unknown. In addition to biofilm bacteria on necrotic tissue and implants, studies have implicated intracellular infection of osteoblasts and osteocytes as a mechanism of chronic osteomyelitis. Thus, we performed the first systematic transmission electron microscopy (TEM) studies to formally define major reservoirs of S. aureus in chronically infected mouse (Balb/c J) long bone tissue. Although rare, evidence of colonized osteoblasts was found. In contrast, we readily observed S. aureus within canaliculi of live cortical bone, which existed as chains of individual cocci and submicron rod-shaped bacteria leading to biofilm formation in osteocyte lacunae. As these observations do not conform to the expectations of S. aureus as non-motile cocci 1.0 to 1.5m in diameter, we also performed immunoelectron microscopy (IEM) following in vivo BrdU labeling to assess the role of bacterial proliferation in canalicular invasion. The results suggest that the deformed bacteria: (1) enter canaliculi via asymmetric binary fission; and (2) migrate toward osteocyte lacunae via proliferation at the leading edge. Additional in vitro studies confirmed S. aureus migration through a 0.5-m porous membrane. Collectively, these findings define a novel mechanism of bone infection, and provide possible new insight as to why S. aureus implant-related infections of bone tissue are so challenging to treat. (c) 2016 American Society for Bone and Mineral Research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available