4.3 Article

Bone metabolism markers and angiogenic cytokines as regulators of human hematopoietic stem cell mobilization

Journal

JOURNAL OF BONE AND MINERAL METABOLISM
Volume 36, Issue 4, Pages 399-409

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s00774-017-0853-4

Keywords

Bone markers; Angiopoietins; Hematopoietic stem cells; Mobilization; Bone cells

Funding

  1. NIH HHS [S10 OD016230] Funding Source: Medline

Ask authors/readers for more resources

Hematopoietic stem cell (HSC) mobilization involves cleavage of ligands between HSC and niche components. However, there are scarce data regarding the role of bone cells in human HSC mobilization. We studied biochemical markers of bone metabolism and angiogenic cytokines during HSC mobilization in 46 patients' sera with lymphoma and multiple myeloma, by ELISA. Significant changes between pre-mobilization and collection samples were found: (1) Bone alkaline phosphatase (BALP) increased, indicating augmentation of bone formation; (2) Receptor activator of Nf-kappa B ligand/osteoprotegerin ratio (RANKL/OPG) increased, showing osteoclastic differentiation and survival; however, there was no evidence of increased osteoclastic activity; and (3) Angiopoietin-1/Angiopoietin-2 ratio (ANGP-1/ANGP-2) decreased, consistent with vessel destabilization. Poor mobilizers had significantly higher carboxy-terminal telopeptide of collagen type I (CTX) and lower ANGP-1 at pre-mobilization samples, compared to good ones. CTX, amino-terminal telopeptide of collagen type I (NTX) and ANGP-1 pre-mobilization levels correlated significantly with circulating CD34(+) peak cell counts. Our results indicate that bone formation and vessel destabilization are the two major events during human HSC mobilization. Osteoblasts seem to be the orchestrating cells, while osteoclasts are stimulated but not fully active. Moreover, ANGP-1, CTX and NTX may serve as predictors of poor mobilization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available