4.6 Article

Achieving an unprecedented hydrogen evolution rate by solvent-exfoliated CPP-based photocatalysts

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 12, Pages 5890-5899

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta13514f

Keywords

-

Funding

  1. National Natural Science Foundation of China [21374075, 21244008]

Ask authors/readers for more resources

How to prompt higher photocatalytic hydrogen production (PHP) efficiency from water to achieve practical applications still remains a big challenge with conjugated porous polymers (CPP)-based photocatalysts. Herein, we developed a simple and efficient cosolvent-assisted strategy to significantly improve the photocatalytic efficiency of CPP-based photocatalysts by introducing water-soluble aprotic bipolar co-solvents, including N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), and N-methyl pyrrolidone (NMP). The PHP activity of the pyrene-bithiophene-based CPP (named CP-St) using ascorbic acid (AA) as a sacrificial electron donor could be excellently accelerated in the presence of an aprotic bipolar NMP solvent. CP-St dispersed in an NMP/H2O/AA mixed solution under visible-light (lambda > 420 nm) irradiation without the aid of a Pt cocatalyst achieved an unprecedented hydrogen evolution rate (HER) of 190.7 mmol h(-1) g(-1). As a result, 6 mg CP-St amazingly produced 128.1 mL H-2 (similar to 5.72 mmol) under visible-light irradiation for only 5 h. Excitingly, by introducing 0.5 wt% Pt cocatalyst into the NMP/H2O/AA system, the HER of CP-St could be further boosted to 303.7 mmol h(-1) g(-1) (1.82 mmol h(-1)/6 mg), which represents the highest photocatalytic HER ever reported. This outstanding photocatalytic performance is mainly ascribed to the enhanced dispersity, strong hydrogen-bond interactions, and exfoliation effect by the NMP solvent. This study provides us with some new design ideas and opportunities for effectively catering to the actual hydrogen production demand.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available