4.5 Review

Biomimetic Superhydrophobic Surfaces with Transition Metals and Their Oxides: A Review

Journal

JOURNAL OF BIONIC ENGINEERING
Volume 14, Issue 3, Pages 401-439

Publisher

SPRINGER SINGAPORE PTE LTD
DOI: 10.1016/S1672-6529(16)60408-0

Keywords

biomimetic; superhydrophobic; transition metals; metal oxides

Funding

  1. National Nature Science Foundation of China [51522510, 51675513]
  2. National 973 Project [2013CB632300]

Ask authors/readers for more resources

Transition metals and their oxide materials have been widely employed to fabricate superhydrophobic surfaces, not only because of their surface topography with controllable microstructures leading to water-repellence, diverse adhesion even tunable wettability, but also due to a variety of special properties like optical performance, magnetism, anti-bacterial, transparency and so on. At the meantime, biomimetic superhydrophobic surfaces have attracted great interest from fabricating hierarchical micro-/nano-structures inspired by nature to imitate creature's properties and many potential applications, including self-cleaning, antifogging, antireflection, low drag and great stability and durability. In this review, natural surfaces and biomimetic materials with special wettability are introduced by classification according to the similar microstructure of morphology, like array structure, sheet overlapped structure, high density hairs and seta shaped structure. Not only do we exhibit their special performances, but also try to find out the true reasons behind the phenomenon. Then, the recent progress of a series of superhydrophobic transition mental and their oxide materials, including TiO2, ZnO, Fe3O4, CuO, Ag, Au and so on, is presented with a focus on fabricating methods, microstructures, wettability, and other properties. As followed, these superhydrophobic surfaces can be applied in many fields, such as oil/water separation, self-cleaning, photo-controlled reversible wettability, surface-enhanced Raman scattering, antibacterial, anticorrosion, and synthesis of various applications. However, few of them have been applied in practical life. Hence, we discuss the remaining challenges at present and the development tendency in future at the end of this article. This review aims to present recent development of transition metals and their oxides applied in biomimetic superhydrophobic surfaces about fabrication, microstructure, water repellence, various properties, and potential applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available