4.6 Article

Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential

Journal

BASIC RESEARCH IN CARDIOLOGY
Volume 115, Issue 3, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00395-020-0785-3

Keywords

Exosomes; Foetal stem cells; Size-exclusion chromatography; Ischaemia-reperfusion injury; Angiogenesis; PI3K; Proteomics

Funding

  1. British Heart Foundation [FS/15/70/32044]
  2. National Institute for Health Research Biomedical Research Centre [BRC233/CM/SD/101320]

Ask authors/readers for more resources

Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myocardial infarction which may be mediated by secreted small extracellular vesicles (sEVs). However, MSCs have frequently been harvested from aged or diseased patients, while the isolated sEVs often contain high levels of impurities. Here, we studied the cardioprotective and proangiogenic activities of size-exclusion chromatography-purified sEVs secreted from human foetal amniotic fluid stem cells (SS-hAFSCs), possessing superior functional potential to that of adult MSCs. We demonstrated for the first time that highly pure (up to 1.7 x 10(10) particles/mu g protein) and thoroughly characterised SS-hAFSC sEVs protect rat hearts from ischaemia-reperfusion injury in vivo when administered intravenously prior to reperfusion (38 +/- 9% infarct size reduction, p < 0.05). SS-hAFSC sEVs did not protect isolated primary cardiomyocytes in models of simulated ischaemia-reperfusion injury in vitro, indicative of indirect cardioprotective effects. SS-hAFSC sEVs were not proangiogenic in vitro, although they markedly stimulated endothelial cell migration. Additionally, sEVs were entirely responsible for the promigratory effects of the medium conditioned by SS-hAFSC. Mechanistically, sEV-induced chemotaxis involved phosphatidylinositol 3-kinase (PI3K) signalling, as its pharmacological inhibition in treated endothelial cells reduced migration by 54 +/- 7% (p < 0.001). Together, these data indicate that SS-hAFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available