4.6 Article

A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation

Journal

RSC ADVANCES
Volume 10, Issue 15, Pages 8905-8909

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra00446d

Keywords

-

Funding

  1. National Natural Science Foundation of China [NSFC 51702243, 51972251, 91963209]
  2. National Key Research and Development Program of China [2018YFB1500104]
  3. Fundamental Research Funds for the Central Universities [WUT: 2016IVA093, 2017III022, 2018IVB031]

Ask authors/readers for more resources

All-inorganic CsPbBr3 perovskite solar cells have triggered incredible interest owing to their superior stability, especially under high temperature conditions. Different from the organic-inorganic hybrid perovskites, inorganic CsPbBr3 perovskite always need a high annealing temperature for the formation of a cubic phase. Generally, the higher temperature (over 300 degrees C) and longer annealing time will promote the growth of CsPbBr3, resulting in larger grain sizes and lower trap density in the crystals. However, CsPbBr3 perovskite can also be damaged by excessive annealing temperature (similar to 350 degrees C) and time, since PbBr2 only has a melting temperature close to 357 degrees C. To address this issue, herein, we developed a novel pressure-assisted annealing method to prevent the sublimation of PbBr2 at high temperature. The CsPbBr3 films were firstly deposited by sequential thermal evaporation, and then annealed at 335 degrees C in an alloy pressure vessel. By controlling the pressure of the vessel, we obtained CsPbBr3 films with various morphologies. At normal atmospheric pressure, the as-prepared CsPbBr3 film exhibited small grain sizes and was full of pinholes. With the increase of annealing pressure, the grain sizes of the film showed a significant increasing trend, and the pinholes gradually vanished. When the pressure value came to 10 MPa, compact and uniform CsPbBr3 films with large grain sizes were obtained. Based on these films, CsPbBr3 perovskite solar cells with FTO/compact-TiO2/CsPbBr3/carbon architecture achieved a champion power conversion efficiency of 7.22%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available