4.5 Article

Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 105, Issue 6, Pages 1756-1764

Publisher

WILEY
DOI: 10.1002/jbm.a.36025

Keywords

adipogenesis; adipose-derived stem cell; ECM scaffold; hydrogel; tissue engineering

Funding

  1. Department of Science and Technology of Sichuan Province, China [2014SZ0190]

Ask authors/readers for more resources

Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA). HDPA induced the adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro, with significantly increased expression of adipogenic genes. Subcutaneous injection of HDPA in immunocompetent mice induced host-derived adipogenesis without cell seeding, and adipogenesis was significantly enhanced with ADSCs seeding. The newly formed adipocytes were frequently located on the basal side in the non-seeding group, but this trend was not observed in the ADSCs seeding group. Our results indicated that, similar to human adipose tissue, the ECM scaffold derived from porcine adipose tissue could provide an adipogenic microenvironment for adipose tissue regeneration and is a promising biomaterial for soft tissue augmentation. (C) 2017 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available