4.7 Article

Nanoconfined Synthesis of Nitrogen-Rich Metal-Free Mesoporous Carbon Nitride Electrocatalyst for the Oxygen Evolution Reaction

Journal

ACS APPLIED ENERGY MATERIALS
Volume 3, Issue 2, Pages 1439-1447

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.9b01876

Keywords

carbon nitride; electrodes materials; electrochemistry; nanomaterials; oxygen evolution reaction; catalyst; energy materials; water splitting nanomaterials

Ask authors/readers for more resources

Synthesizing metal-free, low-cost, and durable electrocatalysts that are active for the oxygen evolution reaction (OER) is essential for the development of commercial alkaline water electrolyzers. Herein, we develop a nanoconfined synthesis approach for the fabrication of a metal-free graphitic mesoporous carbon nitride (gMesoCN) electrocatalyst with a high surface area of 406 m(2)/g and high nitrogen content of 48%. This is achieved by a nanohard-templating approach through simple polymerization of guanidine hydrochloride (GndCl) as a single carbon-nitrogen source inside the organized mesopore channels of a mesoporous SBA15 silica nanotemplate. The produced material is characterized with X-ray diffraction (XRD) and transmission electron microscopy (TEM), which confirmed the formation of a well-ordered mesoporous carbon nitride, while analysis of the pore size distribution indicated the formation of uniformly sized pore channels of 4.56 nm. X-ray photoelectron spectroscopy (XPS) indicated that gMesoCN consisted of C and N. The metal-free gMesoCN material showed good electrocatalytic performance for the OER in alkaline medium, where a Tafel slope of 52.4 mV/dec indicated favorable OER kinetics. Significantly, the gMesoCN material demonstrates long-term durability with 98.4% retention of current density after 24 h. The reported gMesoCN material is inexpensive, environmentally friendly, and easy-to-synthesize with the potential for applicability in the field of electrocatalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available