4.4 Article

A newly synthesized nickel chelate can selectively target and overcome multidrug resistance in cancer through redox imbalance both in vivo and in vitro

Journal

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
Volume 22, Issue 8, Pages 1223-1249

Publisher

SPRINGER
DOI: 10.1007/s00775-017-1498-4

Keywords

Apoptosis; Cancer multidrug resistance; P-glycoprotein; Nickel(II)-N-(2-hydroxy acetophenone) glycinate (NiNG); Reactive oxygen species; Animal testing and chronic toxicity study

Funding

  1. Indian Council of Medical Research (ICMR), New Delhi [74/10/2014-PERS]

Ask authors/readers for more resources

Induction of undesired toxicity and emergence of multidrug resistance (MDR) are the major obstacles for cancer treatment. Moreover, aggressive cancers are less sensitive towards existing chemotherapeutics. Therefore, selective targeting of cancers without inducing undesired side effects and designing proper strategies to overcome MDR has utmost importance in modern chemotherapy. Previously we revealed the anticancer properties of some transition metal chelates of Schiff base, but the effectiveness of nickel complex is still unrevealed. Herein, we synthesized and characterized a Schiff base nickel chelate, nickel-(II) N-(2-hydroxyacetophenone) glycinate (NiNG), through different spectroscopic means. NiNG proves to be a broad spectrum anticancer agent with considerable efficacy to overcome MDR in cancer. Antiproliferative effects of NiNG was evaluated using drug-resistant (CEM/ADR5000; NIH-MDR-G185; EAC/Dox), drug-sensitive aggressive (Hct116; CCRF-CEM; EAC/S) and normal (NIH-3T3) cells that reveal the selective nature of NiNG towards drug resistant and sensitive cancer cells without inducing any significant toxicity in normal cells. Moreover, NiNG involves reactive oxygen species (ROS)-mediated redox imbalance for induction of caspase 3-dependent apoptosis in aggressive drug-sensitive Hct116 and drug-resistant NIH-MDR-G185 cells through disruption of mitochondrial membrane potential. Moreover, intraperitoneal (i.p.) application of NiNG at non-toxic doses caused significant increase in the life-span of Swiss albino mice bearing sensitive and doxorubicin-resistant subline of Ehrlich ascites carcinoma cells. It is noteworthy that, in vitro NiNG can only overcome P-glycoprotein-mediated MDR while in vivo NiNG can overcome MRP1-mediated MDR in cancer. Therefore, NiNG has therapeutic potential to target and overcome MDR in cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available