4.6 Article

The Crystal Structure of Cytochrome P450 4B1 (CYP4B1) Monooxygenase Complexed with Octane Discloses Several Structural Adaptations for ω-Hydroxylation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 292, Issue 13, Pages 5610-5621

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M117.775494

Keywords

-

Funding

  1. United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]
  2. Department of Energy, Office of Biological and Environmental Research
  3. National Institutes of Health, NIGMS [P41GM103393]

Ask authors/readers for more resources

P450 family 4 fatty acid omega-hydroxylases preferentially oxygenate primary C-H bonds over adjacent, energetically favored secondary C-H bonds, but the mechanism explaining this intriguing preference is unclear. To this end, the structure of rabbit P450 4B1 complexed with its substrate octane was determined by X-ray crystallography to define features of the active site that contribute to a preference for omega-hydroxylation. The structure indicated that octane is bound in a narrow active-site cavity that limits access of the secondary C-H bond to the reactive intermediate. A highly conserved sequence motif on helix I contributes to positioning the terminal carbon of octane for omega-hydroxylation. Glu-310 of this motif auto-catalytically forms an ester bond with the heme 5-methyl, and the immobilized Glu-310 contributes to substrate positioning. The preference for omega-hydroxylation was decreased in an E310A mutant having a shorter side chain, but the overall rates of metabolism were retained. E310D and E310Q substitutions having longer side chains exhibit lower overall rates, likely due to higher conformational entropy for these residues, but they retained high preferences for octane omega-hydroxylation. Sequence comparisons indicated that active-site residues constraining octane for omega-hydroxylation are conserved in family 4 P450s. Moreover, the heme 7-propionate is positioned in the active site and provides additional restraints on substrate binding. In conclusion, P450 4B1 exhibits structural adaptations for omega-hydroxylation that include changes in the conformation of the heme and changes in a highly conserved helix I motif that is associated with selective oxygenation of unactivated primary C-H bonds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available