4.6 Article

Hsp70's RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 292, Issue 34, Pages 14122-14133

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M117.785394

Keywords

ATPase; chaperone; heat shock protein (HSP); mRNA decay; RNA-binding protein

Funding

  1. National Institutes of Health [R01 CA102428]
  2. University of Maryland Greenebaum Comprehensive Cancer Center
  3. UMGCCC Nathan Schnaper Intern Program in Translational Cancer Research through NCI Grant [R25 CA186872]

Ask authors/readers for more resources

Hsp70 is a protein chaperone that prevents protein aggregation and aids protein folding by binding to hydrophobic peptide domains through a reversible mechanism directed by an ATPase cycle. However, Hsp70 also binds U-rich RNA including some AU-rich elements (AREs) that regulate the decay kinetics of select mRNAs and has recently been shown to bind and stabilize some ARE-containing transcripts in cells. Previous studies indicated that both the ATP- and peptide-binding domains of Hsp70 contributed to the stability of Hsp70-RNA complexes and that ATP might inhibit RNA recruitment. This suggested the possibility that RNA binding by Hsp70 might mimic features of its peptide-directed chaperone activities. Here, using purified, cofactor-free preparations of recombinant human Hsp70 and quantitative biochemical approaches, we found that high-affinity RNA binding requires at least 30 nucleotides of RNA sequence but is independent of Hsp70's nucleotide-bound status, ATPase activity, or peptide-binding roles. Furthermore, although both the ATP- and peptide-binding domains of Hsp70 could form complexes with an ARE sequence from VEGFA mRNA in vitro, only the peptide-binding domain could recover cellular VEGFA mRNA in ribonucleoprotein immunoprecipitations. Finally, Hsp70-directed stabilization of VEGFA mRNA in cells was mediated exclusively by the protein's peptide-binding domain. Together, these findings indicate that the RNA-binding and mRNA-stabilizing functions of Hsp70 are independent of its protein chaperone cycle but also provide potential mechanical explanations for several well-established and recently discovered cytoprotective and RNA-based Hsp70 functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available