4.6 Article

A Cdc48 Retrochaperone Function Is Required for the Solubility of Retrotranslocated, Integral Membrane Endoplasmic Reticulum-associated Degradation (ERAD-M) Substrates

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 292, Issue 8, Pages 3112-3128

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M116.770610

Keywords

E3 ubiquitin ligase; endoplasmic reticulum (ER); endoplasmic-reticulum-associated protein degradation (ERAD); ubiquitin; ubiquitin ligase; Cdc48; Hmg2; Npl4; Retrotranslocation; Ufd1

Funding

  1. National Institutes of Health [5R37DK051996-18]
  2. National Institutes of Health Postdoctoral Fellowship [1F32GM111024-01]
  3. Burroughs Wellcome Fund [1013987, DP2GM119132]

Ask authors/readers for more resources

A surprising feature of endoplasmic reticulum (ER)-associated degradation (ERAD) is the movement, or retrotranslocation, of ubiquitinated substrates from the ER lumen or membrane to the cytosol where they are degraded by the 26S proteasome. Multispanning ER membrane proteins, called ERAD-M substrates, are retrotranslocated to the cytosol as full-length intermediates during ERAD, and we have investigated how they maintain substrate solubility. Using an in vivo assay, we show that retrotranslocated ERAD-M substrates are moved to the cytoplasm as part of the normal ERAD pathway, where they are part of a solely proteinaceous complex. Using proteomics and direct biochemical confirmation, we found that Cdc48 serves as a critical retrochaperone for these ERAD-M substrates. Cdc48 binding to retrotranslocated, ubiquitinated ERAD-M substrates is required for their solubility; removal of the polyubiquitin chains or competition for binding by addition of free polyubiquitin liberated Cdc48 from retrotranslocated proteins and rendered them insoluble. All components of the canonical Cdc48 complex Cdc48-Npl4-Ufd1 were present in solubilized ERAD-M substrates. This function of the complex was observed for both HRD and DOA pathway substrates. Thus, in addition to the long known ATP-dependent extraction of ERAD substrates during retrotranslocation, the Cdc48 complex is generally and critically needed for the solubility of retrotranslocated ERAD-M intermediates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available