4.6 Article

Crystal structure of the human alkaline sphingomyelinase provides insights into substrate recognition

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 292, Issue 17, Pages 7087-7094

Publisher

ELSEVIER
DOI: 10.1074/jbc.M116.769273

Keywords

-

Funding

  1. Canada Foundation for Innovation
  2. Natural Sciences and Engineering Research Council of Canada
  3. University of Saskatchewan
  4. Government of Saskatchewan
  5. Western Economic Diversification Canada
  6. National Research Council Canada
  7. Canadian Institutes of Health Research
  8. Canadian Institutes of Health Research Strategic Training Initiative in Chemical Biology
  9. CREATE Training Program in Bionanomachines (Natural Sciences and Engineering Research Council of Canada)
  10. Canada Research Chair
  11. Canadian Institutes of Health Research Operating Grant [MOP-133535]

Ask authors/readers for more resources

Absorption of dietary sphingomyelin (SM) requires its initial degradation into ceramide, a process catalyzed by the intestinal enzyme alkaline sphingomyelinase (alk-SMase, NPP7, ENPP7). alk-SMase belongs to the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, the members of which hydrolyze nucleoside phosphates, phospholipids, and other related molecules. NPP7 is the only paralog that can cleave SM, and its activity requires the presence of bile salts, a class of physiological anionic detergents. To elucidate the mechanism of substrate recognition, we determined the crystal structure of human alk-SMase in complex with phosphocholine, a reaction product. Although the overall fold and catalytic center are conserved relative to other NPPs, alk-SMase recognizes the choline moiety of its substrates via an NPP7-specific aromatic box composed of tyrosine residues. Mutational analysis and enzymatic activity assays identified features on the surface of the protein-a cationic patch and a unique hydrophobic loop-that are essential for accessing SM in bile salt micelles. These results shed new light on substrate specificity determinants within the NPP enzyme family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available