4.6 Article

A universal strategy to obtain highly redox-active porous carbons for efficient energy storage

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 7, Pages 3717-3725

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta13520k

Keywords

-

Funding

  1. National Natural Science Foundation of China [21875165, 51772216, 21703161, 21905207]
  2. Science and Technology Commission of Shanghai Municipality, China [14DZ2261100]
  3. Natural Foundation of Hubei Province of China [2014CFB782]
  4. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Quinones are highly redox-active due to their remarkable electron transfer kinetics and electrochemical reversibility, and amines credited with exceptional electron-pair donicity can strengthen the redox kinetics of quinones and simultaneously incorporate electroactive nitrogen species. Herein, a universal route based on benzoquinone and amines with different chemical structures is developed to engineer O/N codoped porous carbons. This approach drives the designability of high-surface-area carbons with tailored geometries (nanosphere, nanofiber, granule and honeycomb), ensuring fast ion/electron transport kinetics to support electrical double layer capacitance. Besides, highly redox-active O/N heteroatoms trigger remarkable pseudocapacitance via reversible faradaic reactions of benzoquinone/hydroquinone transformation and pyridinic/pyrrolic nitrogen response in a H2SO4 electrolyte. Consequently, a representative supercapacitor achieves greatly enhanced electrochemical reaction dynamics, yielding an extraordinary energy density (18.2 W h kg(-1)), ultralong stability and excellent high-rate features (90.1% energy retention over 100 000 successive cycles at 20 A g(-1)). The enhanced wetting compatibility of carbon surfaces/electrolyte ions resulting from O/N doping can further extend the carbon electrodes to water-in-salt, organic and ionic liquid electrolytes for constructing high energy supercapacitors (up to 90.6 W h kg(-1)). This work provides a general guidance to design high-performance carbons toward efficient energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available