4.7 Article

Multifunctional polyoxometalates encapsulated in MIL-100(Fe): highly efficient photocatalysts for selective transformation under visible light

Journal

DALTON TRANSACTIONS
Volume 44, Issue 41, Pages 18227-18236

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5dt02986d

Keywords

-

Funding

  1. National Natural Science Foundation of China [21273036, 21177024]
  2. Science & Technology Plan Project of Fujian Province [2014Y2003]

Ask authors/readers for more resources

H3PMo12O40 molecules have been successfully encapsulated in the cavities of MIL-100(Fe) via a facile hydrothermal method (denoted as HPMo@MIL-100(Fe)). A series of characterization has corroborated the insertion of H3PMo12O40 within the cavities of MIL-100(Fe). The resulting HPMo@MIL-100(Fe) nano-composites have exhibited much higher photoactivity than the original-MIL-100(Fe) toward the photocatalytic selective oxidation of benzylic alcohols and the reduction of Cr(VI) under visible light irradiation (lambda >= 420 nm). The higher photoactivity of HPMo@MIL-100(Fe) can be attributed to the integrative effect of enhanced light absorption intensity and more efficient separation of photogenerated electron-hole pairs. The host porous structure of MIL-100(Fe) can achieve a uniform composition with H3PMo12O40, which is significantly important for producing highly reactive dispersed H3PMo12O40 molecules and enhancing the photocatalytic activity of HPMo@MIL-100(Fe) nanocomposites. And the immobilized H3PMo12O40 molecules are more convenient for recycling. Importantly, almost no Fe and Mo ions leach from the MIL-100(Fe) during the reaction, which verifies the photostability of the HPMo@MIL-100(Fe). In addition, possible photocatalytic redox reaction mechanisms have been investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available