4.1 Article

Controlling bacterial fouling with polyurethane/N-halamine semi-interpenetrating polymer networks

Journal

JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS
Volume 32, Issue 5, Pages 542-554

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0883911516689334

Keywords

Interpenetrating polymer network; N-halamine; antimicrobial; fouling; polyurethane

Funding

  1. NIH, NIDCR [R01DE018707]

Ask authors/readers for more resources

N-halamine-based interpenetrating polymer networks were developed as a simple and effective strategy in the preparation of antimicrobial polymers. An N-halamine monomer, N-chloro-2, 2, 6, 6-tetramethyl-4-piperidyl methacrylate, was incorporated into polyurethane in the presence of a cross-linker and an initiator. Post-polymerization of the monomers led to the formation of polyurethane/N-halamine semi-interpenetrating polymer networks. The presence of N-halamines in the semi-interpenetrating polymer networks was confirmed by attenuated total reflectance infrared, water contact angle, and energy-dispersive X-ray spectroscopy analysis. The N-halamine contents in the semi-interpenetrating polymer networks could be readily controlled by changing reaction conditions. The distribution of active chlorines within the semi-interpenetrating polymer networks was characterized with energy-dispersive X-ray spectroscopy. Contact mode antimicrobial tests, zone of inhibition studies, and scanning electron microscopy observations showed that the semi-interpenetrating polymer networks had potent antimicrobial and antifouling effects against both Gram-positive and Gram-negative bacteria. Release tests demonstrated the outstanding stability of the N-halamine structures in the new semi-interpenetrating polymer networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available