4.4 Article

Characterization of an Aldolase Involved in Cholesterol Side Chain Degradation in Mycobacterium tuberculosis

Journal

JOURNAL OF BACTERIOLOGY
Volume 200, Issue 2, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00512-17

Keywords

DUF35; M. tuberculosis; steroid degradation; aldolase; cholesterol; hydratase

Categories

Funding

  1. Natural Science and Engineering Research Council of Canada [2015-05366]

Ask authors/readers for more resources

The heteromeric acyl coenzyme A (acyl-CoA) dehydrogenase FadE28-FadE29 and the enoyl-CoA hydratase ChsH1-ChsH2, encoded by genes within the intracellular growth (igr) operon of Mycobacterium tuberculosis, catalyze the dehydrogenation of the cholesterol metabolite 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA), with a 3-carbon side chain, and subsequent hydration of the product 3-oxo-4,17-pregnadiene-20-carboxyl-CoA (3-OPDC-CoA) to form 17-hydroxy-3-oxo-4-pregnene-20-carboxyl-CoA (17-HOPC-CoA). The gene downstream of chsH2, i.e., ltp2, was expressed in recombinant Rhodococcus jostii RHA1 in combination with other genes within the igr operon. His-tagged Ltp2 copurified with untagged ChsH1-ChsH2, ChsH2, or the C-terminal domain of ChsH2, which contains a domain of unknown function (DUF35). Ltp2 in association with ChsH1-ChsH2 or just the DUF35 domain of ChsH2 was shown to catalyze the retroaldol cleavage of 17-HOPC-CoA to form androst-4-ene3,17-dione and propionyl-CoA. Steady-state kinetic analysis using the Ltp2-DUF35 complex showed that the aldolase had optimal activity at pH 7.5, with a K-m of 6.54 +/- 0.90 mu M and a k(cat) of 159 +/- 8.50 s(-1). ChsH1-ChsH2 could hydrate only about 30% of 3-OPDC-CoA, but this unfavorable equilibrium could be overcome when the aldolase was present to remove the hydrated product, providing a rationale for the close association of the aldolase with the hydratase. Homologs of ChsH1, ChsH2, and Ltp2 are found in steroid-degrading Gram-positive and Gram-negative bacteria, suggesting that side chains of diverse steroids may be cleaved by aldolases in the bacteria. IMPORTANCE The C-C bond cleavage of the D-ring side chain of cholesterol was shown to be catalyzed by an aldolase. The aldolase associates with the hydratase that catalyzes the preceding reaction in the cholesterol side chain degradation pathway. These enzymes are encoded by genes within the intracellular growth (igr) operon of M. tuberculosis, and the operon was demonstrated previously to be linked to the pathogenicity and persistence of the bacteria in macrophages and in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available