4.0 Article

Determination of the relative contribution of the non-dissolved fraction of ZnO NP on membrane permeability and cytotoxicity

Journal

INHALATION TOXICOLOGY
Volume 32, Issue 2, Pages 86-95

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/08958378.2020.1743394

Keywords

Cytotoxicity; hemolysis; protein corona; RBC; THP-1 cells; Zn2+; ZnO NP

Categories

Funding

  1. NIEHS NIH HHS [F32 ES027324, R01 ES023209] Funding Source: Medline
  2. NIGMS NIH HHS [P20 GM103546, P30 GM103338] Funding Source: Medline

Ask authors/readers for more resources

Background: While the role of lysosomal membrane permeabilization (LMP) in NP-induced inflammatory responses has been recognized, the underlying mechanism of LMP is still unclear. The assumption has been that zinc oxide (ZnO)-induced LMP is due to Zn2+; however, little is known about the role of ZnO nanoparticles (NP) in toxicity. Methods: We examined the contribution of intact ZnO NP on membrane permeability using red blood cells (RBC) and undifferentiated THP-1 cells as models of particle-membrane interactions to simulate ZnO NP-lysosomal membrane interaction. The integrity of plasma membranes was evaluated by transmission electron microscopy (TEM) and confocal microscopy. ZnO NP dissolution was determined using ZnAF-2F, Zn2+ specific probe. The stability of ZnO NP inside the phagolysosomes of phagocytic cells, differentiated THP-1, alveolar macrophages, and bone marrow-derived macrophages, was determined. Results: ZnO NP caused significant hemolysis and cytotoxicity under conditions of negligible dissolution. Fully ionized Zn2SO4 caused slight hemolysis, while partially ionized ZnO induced significant hemolysis. Confocal microscopy and TEM images did not reveal membrane disruption in RBC and THP-1 cells, respectively. ZnO NP remained intact inside the phagolysosomes after a 4 h incubation with phagocytic cells. Conclusions: These studies demonstrate the ability of intact ZnO NP to induce membrane permeability and cytotoxicity without the contribution of dissolved Zn2+, suggesting that ZnO NP toxicity does not necessarily depend upon Zn2+. The stability of ZnO NP inside the phagolysosomes suggests that LMP is the result of the toxic effect of intact ZnO NP on phagolysosomal membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available