3.8 Article

A Cognitive Radio Spectrum Sensing Method for an OFDM Signal Based on Deep Learning and Cycle Spectrum

Publisher

HINDAWI LTD
DOI: 10.1155/2020/5069021

Keywords

-

Funding

  1. Shandong Ship Control Engineering and Intelligent System Engineering Research Center 2019 Open Special Fund Project [SSCC-2019-0007]

Ask authors/readers for more resources

In a cognitive radio network (CRN), spectrum sensing is an important prerequisite for improving the utilization of spectrum resources. In this paper, we propose a novel spectrum sensing method based on deep learning and cycle spectrum, which applies the advantage of the convolutional neural network (CNN) in an image to the spectrum sensing of an orthogonal frequency division multiplex (OFDM) signal. Firstly, we analyze the cyclic autocorrelation of an OFDM signal and the cyclic spectrum obtained by the time domain smoothing fast Fourier transformation (FFT) accumulation algorithm (FAM), and the cyclic spectrum is normalized to gray scale processing to form a cyclic autocorrelation gray scale image. Then, we learn the deep features of layer-by-layer extraction by the improved CNN classic LeNet-5 model. Finally, we input the test set to verify the trained CNN model. Simulation experiments show that this method can complete the spectrum sensing task by taking advantage of the cycle spectrum, which has better spectrum sensing performance for OFDM signals under a low signal-noise ratio (SNR) than traditional methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available