4.6 Article

A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 6, Pages 3119-3127

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta11663j

Keywords

-

Funding

  1. National Research Foundation of Korea - Korea government (MSIT) [2019M3E6A1064706, 2018M1A2A2061987, 2019M3D1A1079306]
  2. Research Center Program of the Institute for Basic Science in Korea [IBS-R006-A2]
  3. National Research Foundation of Korea [2019M3E6A1064706, IBS-R006-D1-2020-A00, 2018M1A2A2061987] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Lithium-ion batteries (LIBs) are considered as fascinating energy storage devices. However, scarcity and high cost of lithium resources lead to increasing research interest in next-generation batteries, such as potassium-ion batteries (KIBs), due to their similar electrochemical characteristics to LIBs and abundant potassium resources. However, significant problems in the search for suitable anode materials for KIBs continue to exist due to the hazards of potassium metal and unstable cycling performance of carbonaceous materials and metal oxides due to the large ionic size of potassium. Herein, we report on a well-ordered mesoporous niobium nitride/N-doped carbon hybrid (m-NbN/NC), verifying the potential of the transition metal nitride as the new K+ insertion host. The electrode delivers reversible capacities of 143 mA h g(-1) at 0.01 A g(-1) and 49 mA h g(-1) at 1 A g(-1). More impressively, a capacity retention of 100% at 0.5 A g(-1) after 2000 cycles was achieved. In situ X-ray diffraction and ex situ scanning electron microscopy (SEM) analysis indicated that the m-NbN/NC electrode retains its structural integrity during potassiation that was accompanied by small strain, which was ascribed to the high proportion of surface-controlled reaction. This work points at a feasible new class of anode materials for ultra-stable KIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available