4.6 Article

Proton Synchrotron Gamma-Rays and the Energy Crisis in Blazars

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 893, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/2041-8213/ab830a

Keywords

-

Funding

  1. Lyman Jr. Spitzer Postdoctoral Fellowship
  2. Fermi Guest Investigation grant [80NSSC18K1745]

Ask authors/readers for more resources

The origin of high-energy emission in blazars jets (i.e., leptonic versus hadronic) has been a longstanding matter of debate. Here, we focus on one variant of hadronic models where proton synchrotron radiation accounts for the observed steady gamma-ray blazar emission. Using analytical methods, we derive the minimum jet power for the largest blazar sample analyzed to date (145 sources), taking into account uncertainties of observables and jet's physical parameters. We compare against three characteristic energy estimators for accreting systems, i.e., the Eddington luminosity, the accretion disk luminosity, and the power of the Blandford-Znajek process, and find that is about 2 orders of magnitude higher than all energetic estimators for the majority of our sample. The derived magnetic field strengths in the emission region require either large amplification of the jet's magnetic field (factor of 30) or place the gamma-ray production site at sub-pc scales. The expected neutrino emission peaks at similar to 0.1-10 EeV, with typical peak neutrino fluxes similar to 10(-4) times lower than the peak gamma-ray fluxes. We conclude that if relativistic hadrons are present in blazar jets, they can only produce a radiatively subdominant component of the overall spectral energy distribution of the blazar's steady emission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available