4.1 Article

Short-term prediction of PM2.5 pollution with deep learning methods

Journal

GLOBAL NEST JOURNAL
Volume 22, Issue 1, Pages 126-131

Publisher

GLOBAL NETWORK ENVIRONMENTAL SCIENCE & TECHNOLOGY
DOI: 10.30955/gnj.003208

Keywords

Air pollution; particulate matter; deep learning; prediction; GRU; RNN

Ask authors/readers for more resources

Particulate matter (PM), classified according to aerodynamic diameter, is one of the harmful pollutants causing health damaging effects. It is considered as cancerogenic by the World Health Organization (WHO) because of the substances found in the chemical composition of PM. In this study, short-term prediction of PM2.5 pollution at 1, 2 and 3 hours was modelled using deep learning methods. Three deep learning algorithms and the combination thereof were evaluated: Long-short term memory units (LSTM), recurrent neural networks (RNN) and gated recurrent unit (GRU). Air Quality Monitoring Stations of the Ministry of Environment and Urbanization of Turkey were utilized to obtain the data. Specifically, meteorological and air pollution data were obtained from a monitoring station located in Kecioren District of Ankara. Several trials were conducted using different combinations of RNN, GRU and LSTM models. Pollutant concentrations and meteorological factors were integrated into the model as input parameters to predict PM2.5 concentration for 1, 2 and 3 hours. Best results with R-2 of 0.83, 0.7 and 0.63 for 1, 2-, and 3-hour predictions, respectively, were obtained by using a combination of GRU and RNN models. The results of this study are promising for explaining the effect of different deep learning models on prediction performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available