4.6 Article

Anomalies and peculiarities of radiation-induced light absorption in pure silica optical fibers at different temperatures

Journal

JOURNAL OF APPLIED PHYSICS
Volume 121, Issue 21, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4984601

Keywords

-

Ask authors/readers for more resources

Undoped-silica-core F-doped-silica-cladding optical fibers (undoped fibers) are an important fiber type for applications requiring resistance to ionizing radiation (e.g., the nuclear industry, space, and military applications), the most important fundamental radiation-induced color centers arising in such fibers being self-trapped holes (STH). Despite the previous in-depth STH investigations, there have remained a few not-fully understood issues, such as the relationship between the radiation-induced absorption (RIA) bands due to STH in undoped fibers, on the one hand, and in bulk silica samples, on the other, the role of strain in the silica network in the STH occurrence, and possible peculiarities of short-lived STH-like radiation-induced color centers at temperatures above RT. To address these issues, we investigate the RIA spectra in undoped fibers with different frozen-in strain in their silica network immediately in the process of gamma-irradiation to a dose of 1 kGy, the irradiation temperature being in the range +/- 60 degrees C or liquid nitrogen temperature (LNT). Gaussian decomposition of the RIA spectra measured at LNT has yielded STH bands at 2.6 and 2.16 eV together with the classical STH bands at 1.88 and 1.63 eV observed in fibers more frequently than the former bands. Based on this observation, it is proposed that all the STH bands observable in fibers fall into two classes: those inherent in silica and those strain-assisted, which can adjoin each other in the fiber silica network. The inherent STH include the well-known low-temperature infrared absorption and the bands at 2.6 and 2.16 eV; the strain assisted STH, the 1.88- and 1.63-eV bands. The 1.88-eV band is argued to be due to STH1, the 1.63-eV one, due to STH2. Anomalously high RIA at T = 0 and +60 degrees C is revealed and explained for the first time. The former effect is found to be caused by extreme compression of silica at T similar to 0 degrees C enhancing the strain-assisted STH bands. The anomaly at T - +60 degrees C is found to be due to a previously unknown broad RIA band at similar to 1.08 eV, which is likely to be associated with STH or self-trapped electrons and to result from either large network strain at the compression phases of enhanced thermal oscillation, or large expansion at the opposite phases. The RIA enhancement at T - +60 degrees C observed in this paper for the first time can influence fiber applications in the nuclear industry associated with high temperatures and high dose rates. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available