4.6 Article

Spin wave generation by surface acoustic waves

Journal

JOURNAL OF APPLIED PHYSICS
Volume 122, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4996102

Keywords

-

Funding

  1. NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS) [EEC-1160504]

Ask authors/readers for more resources

Surface acoustic waves ( SAW) on piezoelectric substrates can excite spin wave resonance (SWR) in magnetostrictive films through magnetoelastic coupling. This acoustically driven SWR enables the excitation of a single spin wave mode with an in-plane wave vector k matched to the magnetoelastic wave vector. A 2D frequency domain finite element model is presented that fully couples elastodynamics, micromagnetics, and piezoelectricity with interface spin pumping effects taken into account. It is used to simulate SAW driven SWR on a ferromagnetic and piezoelectric heterostructure device with an interdigital transducer configuration. These results, for the first time, present the spatial distribution of magnetization components that, together with elastic wave, exponentially decays along the propagation direction due to magnetic damping. The results also show that the system transmission rate S21( dB) can be tuned by both an external bias field and the SAW wavevector. Acoustic spin pumping at magnetic film/normal metal interface leads to damping enhancement in magnetic films that decreases the energy absorption rate from elastic energy. This weakened interaction between the magnetic energy and elastic energy leads to a lower evanescence rate of the SAW that results in a longer distance propagation. With strong magnetoelastic coupling, the SAW driven spin wave is able to propagate up to 1200 mu m. The results give a quantitative indication of the acoustic spin pumping contribution to linewidth broadening. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available