4.7 Article

Robust adaptive attitude control for non-rigid spacecraft with quantized control input

Journal

IEEE-CAA JOURNAL OF AUTOMATICA SINICA
Volume 7, Issue 2, Pages 472-481

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JAS.2020.1003000

Keywords

Adaptive control; attitude control; input quantization; spacecraft; time-varying inertial parameter

Ask authors/readers for more resources

In this paper, an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization, inertial uncertainty and external disturbance. The control signal for each actuator is quantized by sector-bounded quantizers, including the logarithmic quantizer and the hysteresis quantizer. By describing the impact of quantization in a new affine model and introducing a smooth function and a novel form of the control signal, the influence caused by input quantization and external disturbance is properly compensated for. Moreover, with the aid of the adaptive control technique, our approach can achieve attitude tracking without the explicit knowledge of inertial parameters. Unlike existing attitude control schemes for spacecraft, in this paper, the quantization parameters can be unknown, and the bounds of inertial parameters and disturbance are also not needed. In addition to proving the stability of the closed-loop system, the relationship between the control performance and design parameters is analyzed. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available