4.6 Article

Domain Wall Conduction in Calcium-Modified Lead Titanate for Polarization Tunable Photovoltaic Devices

Journal

CELL REPORTS PHYSICAL SCIENCE
Volume 1, Issue 4, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.xcrp.2020.100043

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [51972266, 51672214, 11304248, 11247230]
  2. Natural Science Basic Research Plan in Shaanxi Province of China [2014JM1014]
  3. Scientific Research Program - Shaanxi Provincial Education Department [2013JK0624]
  4. Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province of China
  5. Youth Bai-Ren Project in Shaanxi Province of China

Ask authors/readers for more resources

Ferroelectric domain wall (DW) conduction, confirmed in recent experiments, has attracted intense attention due to its promising applications in optoelectronic devices. Herein, we provide theoretical evidence of electric conduction in Pb0.8Ca0.2TiO3 (PCT) DWs. The separation of charge accumulation in DWs, corresponding to the electronic conduction-band minimum (CBM) and valence-band maximum (VBM), weakens the tendency for the electron-hole recombination, thereby providing more efficient channels for charge transfer. We fabricate PCT-based functional photovoltaic devices with polarization tunable charge transfer to exploit the combined conduction and ferroelectric properties of the DW. The photovoltaic performance of the devices can be regulated by the alternation of ferroelectric domains in PCT, caused by variation of the external poling. Our work broadens the applicability of DW conduction and may inspire the future design of high-performance materials in photovoltaic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available