4.5 Article

The Estimates of the Mean First Exit Time of a Bistable System Excited by Poisson White Noise

Publisher

ASME
DOI: 10.1115/1.4037158

Keywords

Poisson white noise; perturbation technique; Laplace integral method; exit time

Categories

Funding

  1. National Natural Science Foundation of China [11572247, 61571365, 11372247]

Ask authors/readers for more resources

We propose a method to find an approximate theoretical solution to the mean first exit time (MFET) of a one-dimensional bistable kinetic system subjected to additive Poisson white noise, by extending an earlier method used to solve stationary probability density function. Based on the Dynkin formula and the properties of Markov processes, the equation of the mean first exit time is obtained. It is an infinite-order partial differential equation that is rather difficult to solve theoretically. Hence, using the non-Gaussian property of Poisson white noise to truncate the infinite-order equation for the mean first exit time, the analytical solution to the mean first exit time is derived by combining perturbation techniques with Laplace integral method. Monte Carlo simulations for the bistable system are applied to verify the validity of our approximate theoretical solution, which shows a good agreement with the analytical results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available