4.7 Article

Quantification and evaluation of atmospheric ammonia emissions with different methods: a case study for the Yangtze River Delta region, China

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 20, Issue 7, Pages 4275-4294

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-20-4275-2020

Keywords

-

Funding

  1. National Natural Science Foundation of China [91644220, 41922052]
  2. National Key Research and Development Program of China [2017YFC0210106]

Ask authors/readers for more resources

To explore the effects of data and method on emission estimation, two inventories of NH3 emissions of the Yangtze River Delta (YRD) region in eastern China were developed for 2014 based on constant emission factors (E1) and those characterizing agricultural processes (E2). The latter derived the monthly emission factors and activity data integrating the local information of soil, meteorology, and agricultural processes. The total emissions were calculated to be 1765 and 1067 Gg with E1 and E2, respectively, and clear differences existed in seasonal and spatial distributions. Elevated emissions were found in March and September in E2, attributed largely to the increased top dressing fertilization and to the enhanced NH3 volatilization under high temperature, respectively. A relatively large discrepancy between the inventories existed in the northern YRD with abundant croplands. With the estimated emissions 38% smaller in E2, the average of simulated NH3 concentrations with an air quality model using E2 was 27% smaller than that using E1 at two ground sites in the YRD. At the suburban site in Pudong, Shanghai (SHPD), the simulated NH3 concentrations with E1 were generally larger than observations, and the modeling performance was improved, indicated by the smaller normalized mean errors (NMEs) when E2 was applied. In contrast, very limited improvement was found at the urban site JSPAES, as E2 failed to improve the emission estimation of transportation and residential activities. Compared to NH3, the modeling performance for inorganic aerosols was better for most cases, and the differences between the simulated concentrations with E1 and E2 were clearly smaller, at 7 %, 3 %, and 12% (relative to E1) for NH4+, SO42-, and NO3-, respectively. Compared to the satellite-derived NH3 column, application of E2 significantly corrected the overestimation in vertical column density for January and October with E1, but it did not improve the model performance for July. The NH3 emissions might be underestimated with the assumption of linear correlation between NH3 volatilization and soil pH for acidic soil, particularly in warm seasons. Three additional cases, i.e., 40% abatement of SO2, 40% abatement of NOx, and 40% abatement of both species, were applied to test the sensitivity of NH3 and inorganic aerosol concentrations to precursor emissions. Under an NH3-rich condition, estimation of SO2 emissions was detected to be more effective on simulation of secondary inorganic aerosols compared to NH3. Reduced SO2 would restrain the formation of (NH4)(2)SO4 and thereby enhance the NH3 concentrations. To improve the air quality more effectively and efficiently, NH3 emissions should be substantially controlled along with SO2 and NOx in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available