4.7 Article

WGS to predict antibiotic MICs for Neisseria gonorrhoeae

Journal

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY
Volume 72, Issue 7, Pages 1937-1947

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jac/dkx067

Keywords

-

Funding

  1. National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford
  2. Public Health England (PHE) [HPRU-2012-10041]
  3. NIHR Oxford Biomedical Research Centre
  4. Wellcome Trust [WT098615/Z/12/Z]
  5. Department of Health [WT098615, HICF-T5-358]
  6. MRC [MR/K023985/1] Funding Source: UKRI
  7. Medical Research Council [MR/K023985/1] Funding Source: researchfish
  8. National Institute for Health Research [NF-SI-0513-10110, NF-SI-0508-10279, CL-2013-13-009, RP-PG-0514-20015] Funding Source: researchfish

Ask authors/readers for more resources

Tracking the spread of antimicrobial-resistant Neisseria gonorrhoeae is a major priority for national surveillance programmes. We investigate whether WGS and simultaneous analysis of multiple resistance determinants can be used to predict antimicrobial susceptibilities to the level of MICs in N. gonorrhoeae. WGS was used to identify previously reported potential resistance determinants in 681 N. gonorrhoeae isolates, from England, the USA and Canada, with phenotypes for cefixime, penicillin, azithromycin, ciprofloxacin and tetracycline determined as part of national surveillance programmes. Multivariate linear regression models were used to identify genetic predictors of MIC. Model performance was assessed using leave-one-out cross-validation. Overall 1785/3380 (53%) MIC values were predicted to the nearest doubling dilution and 3147 (93%) within +/- 1 doubling dilution and 3314 (98%) within +/- 2 doubling dilutions. MIC prediction performance was similar across the five antimicrobials tested. Prediction models included the majority of previously reported resistance determinants. Applying EUCAST breakpoints to MIC predictions, the overall very major error (VME; phenotypically resistant, WGS-prediction susceptible) rate was 21/1577 (1.3%, 95% CI 0.8%-2.0%) and the major error (ME; phenotypically susceptible, WGS-prediction resistant) rate was 20/1186 (1.7%, 1.0%-2.6%). VME rates met regulatory thresholds for all antimicrobials except cefixime and ME rates for all antimicrobials except tetracycline. Country of testing was a strongly significant predictor of MIC for all five antimicrobials. We demonstrate a WGS-based MIC prediction approach that allows reliable MIC prediction for five gonorrhoea antimicrobials. Our approach should allow reasonably precise prediction of MICs for a range of bacterial species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available