4.7 Article

P-Functionalized and O-deficient TiOn/VOm nanoparticles grown on Ni foam as an electrode for supercapacitors: epitaxial grown heterojunction and visible-light-driven photoresponse

Journal

DALTON TRANSACTIONS
Volume 49, Issue 14, Pages 4476-4490

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0dt00317d

Keywords

-

Funding

  1. National Natural Science Foundation of China [21771028, 21371184]
  2. Large-Scale Instrument and Equipment Open Foundation in Chongqing University [201903150109]
  3. National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction
  4. Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization

Ask authors/readers for more resources

P-TiOn-VOm nanowires were grown on nickel foam (NF) via a one-pot hydrothermal method and by further vapor deposition/phosphorization method. It was found that low valence states of titanium oxide and deficient-oxygen coexist in P-TiOn-VOm/NF. Furthermore, (TiO1.25)(3.07) (denoted as TiOn) and VO (denoted as VOm) possess similar structures and matched facets, and their epitaxial growth leads to the formation of TiOn/VOm heterostructure with a formation energy of -1.59 eV. P-TiOn-VOm/NF possesses good electron conductivity and electrons can be transferred from Ti to V centers, as evidenced by the DFT calculations and the XPS spectra. As a result, the specific capacity of P-TiOn-VOm/NF can reach 785 C g(-1) at 1 A g(-1) in the potential range of 0-0.55 V vs. Hg/HgO, which is much larger than those of VOm/NF, P-VOm/NF, and P-TiO2-VOm/NF. On the other hand, the TiOn/VOm heterostructure also favors the separation and transfer of photoinduced electrons and holes, and P-TiOn-VOm/NF exhibits visible-light-driven photoresponse. Under visible light illumination, the specific capacity of P-TiOn-VOm/NF is increased by 6.2% relative to that in the dark. Furthermore, the P-TiOn-VOm/NF//activated carbon (AC) asymmetric supercapacitor (ASC) shows an energy density of 37.2 W h kg(-1) at a power density of 1 kW kg(-1) and excellent cycling performance with 93.6% capacity retention after 10000 cycles at 5 A g(-1), which is comparable to and even superior to those of titanium oxides and vanadium oxides. A promising achievement has been proposed to improve the energy storage performance of P-TiOn-VOm through P-functionalization and O-deficiency in this work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available