4.6 Review

Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects

Journal

MATERIALS HORIZONS
Volume 7, Issue 4, Pages 1014-1029

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9mh01668f

Keywords

-

Funding

  1. Australian Research Council (ARC) Future Fellowship [FT160100195]
  2. Australian Research Council (ARC) Discovery Early Career Researcher Award (ARC DECRA) [DE160100589]

Ask authors/readers for more resources

Ammonia is a key industrial raw material for fertilisers, chemicals and energy. The annual artificial ammonia synthesis via the Haber-Bosch process results in about 2% of global energy consumption and can lead to 1.6% CO2 emission. Hence, it is urgent to develop low-cost and environmentally friendly approaches for artificial ammonia synthesis under ambient conditions. Recently, bismuth (Bi)-based catalysts have attracted great interest due to their excellent nitrogen fixation performance in electrochemical and photocatalytic fields. However, there is still a lack of a comprehensive review on Bi-based nitrogen-fixation materials focusing on their crystal structure, surface engineering and modification methods, which is highly desirable for facilitating their further development towards applications. Herein, we provide an up-to-date review on Bi-based nitrogen-fixation materials and classify them as metallic Bi, bismuth oxide, bismuth oxyhalide, and Bi-based polyoxometalates. Starting from the underlying crystal structure, we analyse the internal electric field, surface engineering and modification methods of Bi-based nitrogen fixation materials. Then, we highlight the latest achievements of Bi-based materials and reveal the challenges and obstacles in the development and application of Bi-based nitrogen-fixation materials. More importantly, this review presents the surface and structure engineering strategies, and future directions for the development of new Bi-based nitrogen-fixation materials under ambient conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available