4.8 Article

Sub-100 nm 2D nanopatterning on a large scale by ultrafast laser energy regulation

Journal

NANOSCALE
Volume 12, Issue 12, Pages 6609-6616

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr09625f

Keywords

-

Ask authors/readers for more resources

Coupling ultrafast light irradiation to surface nanoreliefs leads to periodic patterns, achieving record processing scales down to tens of nanometers. Driven by near-field interactions, the promising potential of the spontaneous pattern formation relies on the scaling up of one-step manufacturing processes. Here, we report the self-assembly of unconventional arrays of nanocavities of 20 nm diameter with a periodicity down to 60 nm upon ultrafast laser irradiation of a nickel surface. In stark contrast to laser-induced surface ripples, which are stochastic and suffer from a lack of regularity, the 2D patterns present an unprecedented uniformity on extreme scales. The onset of nanocavity arrays ordered in a honeycomb lattice is achieved by overcoming the anisotropic polarization response of the surface by a delayed action of cross-polarized laser pulses. The origin of this self-arrangement is identified as a manifestation of Marangoni convection instability in a nanoscale melt layer, destabilized by the laser-induced rarefaction wave.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available