4.7 Article

Simulator-based training of generative neural networks for the inverse design of metasurfaces

Journal

NANOPHOTONICS
Volume 9, Issue 5, Pages 1059-1069

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/nanoph-2019-0330

Keywords

simulator-based training; generative networks; neural networks; adjoint variable method; global optimization

Funding

  1. U.S. Air Force [FA9550-18-1-0070]
  2. Office of Naval Research [N00014-16-1-2630]
  3. David and Lucile Packard Foundation

Ask authors/readers for more resources

Metasurfaces are subwavelength-structured artificial media that can shape and localize electromagnetic waves in unique ways. The inverse design of these devices is a non-convex optimization problem in a high dimensional space, making global optimization a major challenge. We present a new type of population-based global optimization algorithm for metasurfaces that is enabled by the training of a generative neural network. The loss function used for backpropagation depends on the generated pattern layouts, their efficiencies, and efficiency gradients, which are calculated by the adjoint variables method using forward and adjoint electromagnetic simulations. We observe that the distribution of devices generated by the network continuously shifts towards high performance design space regions over the course of optimization. Upon training completion, the best generated devices have efficiencies comparable to or exceeding the best devices designed using standard topology optimization. Our proposed global optimization algorithm can generally apply to other gradient-based optimization problems in optics, mechanics, and electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available