4.1 Article

TPX2 regulates neuronal morphology through kinesin-5 interaction

Journal

CYTOSKELETON
Volume 72, Issue 7, Pages 340-348

Publisher

WILEY-BLACKWELL
DOI: 10.1002/cm.21234

Keywords

TPX2; neuron; molecular motor; microtubule; Eg5; kif11

Categories

Funding

  1. National Institutes of Health
  2. NRSA fellowship from the National Institutes of Health

Ask authors/readers for more resources

TPX2 (targeting protein for Xklp2) is a multifunctional mitotic spindle assembly factor that in mammalian cells localizes and regulates mitotic motor protein kinesin-5 (also called Eg5 or kif11). We previously showed that upon depletion or inhibition of kinesin-5 in cultured neurons, microtubule movements increase, resulting in faster growing axons and thinner dendrites. Here, we show that depletion of TPX2 from cultured neurons speeds their rate of process outgrowth, similarly to kinesin-5 inhibition. The phenotype is rescued by TPX2 re-expression, but not if TPX2's kinesin-5-interacting domain is deleted. These results, together with studies showing a spike in TPX2 expression during dendritic differentiation, suggest that the levels and distribution of TPX2 are likely to be determinants of when and where kinesin-5 acts in neurons. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available