4.6 Article

Fuzzy Clustering Algorithm for Enhancing Reliability and Network Lifetime of Wireless Sensor Networks

Journal

IEEE ACCESS
Volume 8, Issue -, Pages 66013-66024

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.2985495

Keywords

Energy; fuzzy logic; centralized clustering; network lifetime

Funding

  1. Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-Track Research Funding Program

Ask authors/readers for more resources

To prolong the function of wireless sensor networks (WSNs), the lifetime of the system has to be increased. WSNs lifetime can be calculated by using a few generic parameters, such as the time until the death of the first node and other parameters according to the application. Literature indicates that choosing the most appropriate cluster head by clustering is one of the most successful ways to improve the lifespan of the WSN. The drawback of clustering protocols is based on the probabilistic model. Sometimes they select two cluster heads for two different clusters which are very close to each other and results in head situated at the edge of the cluster in some cases. This type of cluster head selection leads to a reduction in energy efficiency. Therefore, we have proposed the LEACH-Fuzzy Clustering (LEACH-FC) protocol and implemented a fuzzy logic-based cluster head selection and cluster formation to maximize the lifetime of the network. For selections of cluster head and formation of the cluster, we have used a centralized approach instead of distributed ones. We have also employed fuzzy logic in the selection of vice cluster head, which is also a centralized approach. The proposed algorithm has been found to be effective in balancing the energy load at each node thereby enhancing the reliability of WSN. It outperforms other proposed algorithms for improving network lifetime and energy consumption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available