4.6 Article

Over 14% efficiency nonfullerene all-small-molecule organic solar cells enabled by improving the ordering of molecular donors via side-chain engineering

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 15, Pages 7405-7411

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta01893g

Keywords

-

Funding

  1. National Science Fund for Distinguished Young Scholars [21925506]
  2. National Key R&D Program of China [2017YFE0106000]
  3. National Natural Science Foundation of China [51773212]
  4. Ningbo S&T Innovation 2025 Major Special Programme [2018B10055]
  5. Ningbo Municipal Science and Technology Innovative Research Team [2015B11002, 2016B10005]
  6. CAS Key Project of Frontier Science Research [QYZDB-SSW-SYS030]

Ask authors/readers for more resources

Improving the short-circuit current density (J(sc)) is a big challenge for gaining highly efficient nonfullerene all-small-molecule organic solar cells (NFASM-OSCs). Herein, a novel small molecular donor, BT-2F which is derived from previously reported BTEC-2F, was designed and synthesized. The shortened alkyl-chains with higher regularity endow BT-2F with more ordered packing arrangement and more compact lamellar stacking as evidenced by the characterization of differential scanning calorimetry and grazing incidence X-ray diffraction. By blending BT-2F with Y6 or N3, BT-2F based devices showed impressive power conversion efficiencies (PCEs) of 13.80% and 14.09% respectively, much higher than the reported PCE of 13.34% for BTEC-2F:Y6. Besides, the efficiency of 14.09% is also among the highest PCE values reported so far for NFASM-OSCs. The distinctly improved J(sc) resulted in enhanced PCE values, meanwhile both BT-2F:Y6 and BT-2F:N3 still maintain high fill factors of over 70%, which are ascribed to the good balance between high crystallinity and appropriate phase separation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available