4.5 Article

Effects of Cutting Speed on MQL Machining Performance of AISI 304 Stainless Steel Using Uncoated Carbide Insert: Application Potential of Coconut Oil and Rice Bran Oil as Cutting Fluids

Journal

ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
Volume 45, Issue 11, Pages 8877-8893

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13369-020-04554-y

Keywords

Minimum quantity lubrication (MQL); Cutting fluid; AISI 304 stainless steel; Flank wear; Chip morphology; Surface roughness

Ask authors/readers for more resources

In metal machining, minimum quantity lubrication (MQL) refers to supply of an optimal amount of cutting fluid into tool-work interfacial region. As compared to traditional dry machining, machining process executed under MQL has several advantages. Properties of cutting fluid play important role toward machining performance. In the present work, application potential of rice bran oil is compared with coconut oil in the context of MQL machining of AISI 304 stainless steel. Cutting force magnitude, approximate tool-tip temperature, flank wear depth, etc., are studied as machining performance indicators. In addition, different tool wear mechanisms, chip morphology, and surface roughness of the machined work part are studied in detail. It is experienced that MQL (rice bran oil) outperforms MQL (coconut oil). MQL (rice bran oil) exhibits lower cutting force, lesser tool-tip temperature, reduced extent of tool wear, and better machined surface finish than dry as well as MQL (coconut oil) machining.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available