4.7 Article

Common Envelope Shaping of Planetary Nebulae. II. Magnetic Solutions and Self-collimated Outflows

Journal

ASTROPHYSICAL JOURNAL
Volume 893, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab8006

Keywords

Planetary nebulae; Protoplanetary nebulae; Common envelope evolution; Common envelope binary stars; Hydrodynamical simulations; Magnetohydrodynamical simulations; Circumstellar disks

Funding

  1. CONACyT [178253]
  2. NSF [PHY05-51164, AST-0200876, AST-0703950, AST 14-13367]
  3. Kavli Institute for Theoretical Physics
  4. DOE

Ask authors/readers for more resources

Magnetic fields of order 10(1)-10(2) Gauss that are present in the envelopes of red giant stars are ejected in common envelope scenarios. These fields could be responsible for the launching of magnetically driven winds in protoplanetary nebulae. Using 2D simulations of magnetized winds interacting with an envelope drawn from a 3D simulation of the common envelope phase, we study the confinement, heating, and magnetic field development of post-common envelope winds. We find that the ejected magnetic field can be enhanced via compression by factors up to similar to 10(4) in circumbinary disks during the self-regulated phases. We find values for the kinetic energy of the order of 10(46) erg that explain the large values inferred in protoplanetary nebula outflows. We show that the interaction of the formed circumbinary disk with a spherical, stellar wind produces a tapered flow that is almost indistinguishable from an imposed tapered flow. This increases the uncertainty of the origin of protoplanetary nebula winds, which could be either stellar, circumstellar (stellar accretion disk), circumbinary (circumbinary accretion disk), or a combination of all three. Within this framework, a scenario for self-collimation of weakly magnetized winds is discussed, which can explain the two objects where the collimation process is observationally resolved, HD 101584 and Hen 3-1475. An explanation for the equatorial, molecular hydrogen emission in CRL 2688 is also presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available