4.6 Article

miR-145 improves metabolic inflammatory disease through multiple pathways

Journal

JOURNAL OF MOLECULAR CELL BIOLOGY
Volume 12, Issue 2, Pages 152-162

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jmcb/mjz015

Keywords

type 2 diabetes; osteoprotegerin; Kruppel-like factor 5; monocyte; NF-kappa B

Categories

Funding

  1. National Natural Science Foundation of China [81270902, 81381220308, 30230380]

Ask authors/readers for more resources

Chronic inflammation plays a pivotal role in insulin resistance and type 2 diabetes, yet the mechanisms are not completely understood. Here, we demonstrated that serum LPS levels were significantly higher in newly diagnosed diabetic patients than in normal control. miR-145 level in peripheral blood mononuclear cells decreased in type 2 diabetics. LPS repressed the transcription of miR-143/145 cluster and decreased miR-145 levels. Attenuation of miR-145 activity by anti-miR-145 triggered liver inflammation and increased serum chemokines in C57BL/6 J mice. Conversely, lentivirus-mediated miR-145 overexpression inhibited macrophage infiltration, reduced body weight, and improved glucose metabolism in db/db mice. And miR-145 overexpression markedly reduced plaque size in the aorta in ApoE(-/-) mice. Both OPG and KLF5 were targets of miR-145. miR-145 repressed cell proliferation and induced apoptosis partially by targeting OPG and KLF5. miR-145 also suppressed NF-kappa B activation by targeting OPG and KLF5. Our findings provide an association of the environment with the progress of metabolic disorders. Increasing miR-145 may be a new potential therapeutic strategy in preventing and treating metabolic diseases such as type 2 diabetes and atherosclerosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available