4.7 Article

trans-10,cis-12-Conjugated Linoleic Acid Affects Expression of Lipogenic Genes in Mammary Glands of Lactating Dairy Goats

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 65, Issue 43, Pages 9460-9467

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.7b02377

Keywords

conjugated linoleic acid; milk fat; lipogenesis; dairy goat; mammary gland

Funding

  1. National Natural Science Foundation of China [31272409, 31672398]
  2. Science Foundation of Shaanxi Province of China [2016KTZDNY02-05]

Ask authors/readers for more resources

The molecular mechanisms on milk fat depression (MFD) in response to trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) supplementation in ruminants were elucidated in this research with dairy goats. A total of 30 2-year-old Xinong Saanen dairy goats [40 +/- 5 days in milk (DIM)] at peak lactation stage were assigned to a 3 X 3 Latin square design (14 day treatment period, followed with 14 day washout). Three CLA treatments included (a) control, fed the basal diet only without CLA supplementation; (b) orally supplemented with 8 g/day of lipid-encapsulated CLA (low dose, CLA-1); and (c) orally supplemented with 16 g/day of lipid-encapsulated CLA (high dose, CLA-2). Expression levels of fatty acid metabolism genes in the mammary tissues were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR) in three goats on day 1 and the other three goats on day 14 in each group after the discontinuation of CLA treatment in the third experimental period. Dietary supplementation of CLA led to a significant decrease of milk fat compared to the control (p < 0.05). Milk fat concentrations in CLA-1 and CLA-2 groups were 2.74 and 2.42%, respectively, while the milk fat concentration in the control group was 2.99%. Decreases in short- and medium-chain fatty acids (<16 carbons) and increases in unsaturated fatty acids were observed in the CLA-2 group (p < 0.05). The desaturation indexes of C16 and C18 fatty acids were obviously increased (p < 0.01). RT-qPCR results revealed decreases of the mRNA expression levels of SREBF1, PPARG, LPL, CD36, FABP3, ACSL1, FASN, ACACA, DGAT2,TIP47, ADRP, and BTN1A1 genes in mammary glands (p < 0.05) and an increase of the SCD gene because of CLA supplementation (p < 0.05). In conclusion, t10,c12-CLA-induced MFD was possibly the result from the downregulation of genes involved in lipogenesis in goat mammary glands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available