4.7 Article

Modeling hydration-mediated ion-ion interactions in electrolytes through oscillating Yukawa potentials

Journal

PHYSICAL REVIEW E
Volume 101, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.101.052603

Keywords

-

Funding

  1. North Dakota Space Grant Consortium
  2. Sao Paulo Research Foundation (FAPESP) [2018/01841-2, 2017/21772-2]
  3. ND EPSCoR

Ask authors/readers for more resources

Classical Poisson-Boltzmann theory represents a mean-field description of the electric double layer in the presence of only Coulomb interactions. However, aqueous solvents hydrate ions, which gives rise to additional hydration-mediated ion-ion interactions. Experimental and computational studies suggest damped oscillations to be a characteristic feature of these hydration-mediated interactions. We have therefore incorporated oscillating Yukawa potentials into the mean-field description of the electric double layer. This is accomplished by allowing the decay length of the Yukawa potential to be complex valued. Ion specificity emerges from assigning individual strengths and phases to the Yukawa potential for anion-anion, anion-cation, and cation-cation pairs as well as for anions and cations interacting with an electrode or macroion. Excluded volume interactions between ions are approximated by replacing the ideal gas entropy by that of a lattice gas. We derive mean-field equations for the Coulomb and Yukawa potentials and use their solutions to compute the differential capacitance for an isolated planar electrode and the pressure that acts between two planar, like-charged macroion surfaces. Attractive interactions appear if the surface charge density of the macroions is sufficiently small.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available