4.8 Article

Hybrid gold nanoparticle-quantum dot self-assembled nanostructures driven by complementary artificial proteins

Journal

NANOSCALE
Volume 12, Issue 7, Pages 4612-4621

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr09987e

Keywords

-

Funding

  1. Agence Nationale de la Recherche (ANR) [ANR-16-CE09-0027-02 HYPNAP, ANR-14-CE08-0004 ARTEMIS]
  2. Region Bretagne

Ask authors/readers for more resources

Hybrid nanostructures are constructed by the direct coupling of fluorescent quantum dots and plasmonic gold nanoparticles. Self-assembly is directed by the strong affinity between two artificial alpha-repeat proteins that are introduced in the capping layers of the nanoparticles at a controlled surface density. The proteins have been engineered to exhibit a high mutual affinity, corresponding to a dissociation constant in the nanomolar range, towards the protein-functionalized quantum dots and gold nanoparticles. Protein-mediated self-assembly is evidenced by surface plasmon resonance and gel electrophoresis. The size and the structure of colloidal superstructures of complementary nanoparticles are analyzed by transmission electron microscopy and small angle X-ray scattering. The size of the superstructures is determined by the number of proteins per nanoparticle. The well-defined geometry of the rigid protein complex sets a highly uniform interparticle distance of 8 nm that affects the emission properties of the quantum dots in the hybrid ensembles. Our results open the route to the design of hybrid emitter-plasmon colloidal assemblies with controlled near-field coupling and better optical response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available