4.3 Article

Effects and Mechanisms of Autophagy Induced by Solubilized-Cholesterol in Hepatocytes: A Comparative Study Among Solvents

Journal

CELL BIOCHEMISTRY AND BIOPHYSICS
Volume 78, Issue 3, Pages 357-366

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12013-020-00917-2

Keywords

Cholesterol; Methyl-beta-cyclodextrin; Autophagy; Apoptosis

Funding

  1. National Natural Science Foundation of China [81370952]

Ask authors/readers for more resources

Cholesterol, the principal sterol in mammalian cells, has been reported to play a role in the pathogenesis of several diseases through autophagy. Due to its insoluble characteristic, all in vitro cholesterol experiments are performed using dimethyl sulphoxide, methyl-beta-cyclodextrin, and ethanol co-solvents. To investigate whether the types of solvents have different effects on cholesterol-induced cell behaviors, we analyzed the effects and mechanisms of autophagy induced by solubilized-cholesterol in hepatic cells. We found that both solubilized-cholesterol and involved solvents could induce autophagy. Solubilized-cholesterol could further enhance the LC3-II expression with or without the pre-treatment with lysosomal blockers compared with the single-solvent groups, indicating that cholesterol could sensitize cells to solvents-induced autophagy. Besides, solubilized-cholesterol and single-solvent treatment could repress the activation of AKT-mTOR pathway. Furthermore, cholesterol solubilized in methyl-beta-cyclodextrin could induce apoptosis while other solubilized-cholesterol or single solvent groups could not, suggesting that different dissolve methods may affect the cytotoxic of cholesterol. These results strongly suggest that the effect of solvent should be taken into consideration in further in vitro cholesterol studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available